Aortic stenosis

December 8 2017 Dr. Khalil Masri

Anatomy

Aortic Stenosis

Worldwide Rheumatic most common

Calcific Aortic Stenosis

Thickening and calcification of the valve

Pathophysiology

 Lipid accumulation
 Inflammation
 calcification

Mayo Clinic Study

- 932 adults were examined the relative prevalence of trileaflet vs congenitally abnormal valves
 - <u>Patients < 50</u>
 - 2/3 Bicuspid
 - 1/3 Unicuspid
 - <u>Patients 50-70</u>
 - 2/3 Bicuspid
 - 1/3 Trileaflet
 - <u>Patients > 70</u>
 - 60% Trileaflet
 - 40% Bicuspid

Aortic Stenosis Associations

- <u>Heyde's syndrome</u>:
- massive GI bleeding due to angiodysplasia
- Lev's disease:
- Calcific aortic stenosis and heart block
- Rare causes:
- Fabry's, SLE, Paget's disease, CKD

Aortic Stenosis Progression

Symptoms

- Exertional angina
- Exertional shortness of breath
- Exertional dizziness or syncope
- Fatigue
- Congestive heart failure

Syncope

- Several proposed explanations
 - Decreased cardiac output due to fixed obstruction
 - Exercise induced vasodilation
 - Arrhythmias
 - Abnormalities in baroreceptor response

Two factors

- Diastolic dysfunction, with an increase in left ventricle filling pressure with exertion
- Inability of LV to increase C.O
- Systolic LV dysfunction is rare
- Overt heart failure is a late, often end stage finding

Why treat Aortic Stenosis?

< 5 years

- Angina
- Syncope \rightarrow ~ 3 years

 \rightarrow

• Heart Failure \rightarrow ~ 2 years

Severe Aortic Stenosis

5 year Survival

Physical Exam Findings

- Crescendo decrescendo ejection systolic murmur
 - Late peaking murmur (severe AS)
 - Radiates to the carotids
 - Is S2 preserved

Physical Exam Findings

Physical Exam Findings

Pulsus parvus et tardus

• Parvus = weak

- (compare carotid pulse to your own)

• Tardus = late

- (compare S2 to carotid pulse)

Diagnosis of Aortic Stenosis

	Mean gradient (mmHg)	Aortic Valve Area (cm2)	
Mild	15-25	> 1.5	
Moderate	25-40	1.0-1.5	
Severe	> 40	0.7-1.0	
Critical	N/A	< 0.7	

Diagnosis of Aortic Stenosis

Hypertrophic Cardiomyopathy

Sub-aortic Membrane

Diagnostic Dilemmas

- Moderate aortic stenosis and LV dysfunction
- A mean gradient may be 25mmHg and significant
 - Low gradient severe aortic stenosis
 - Calculate an aortic valve area
 - Consider Dobutamine Stress Echo
 - Is the aortic valve now opening?
 - Did the gradients go up?
 - How much did the velocity go up by?
 - What happened to AVA?

Response to Stress Echo

	Contractility	Flow	Gradient	AVA
Severe AS	1	1	Ť	\longleftrightarrow
Mild AS	1	ţ	ţ	1

Transesophageal Echo

Direct measurement of the aortic valve area
 Not very accurate

Left Heart Cath

 Can be useful to directly measure gradients across the aortic valve

Treatment of Aortic Stenosis

- Medications
- Balloon aortic valvuloplasty
- Transcatheter aortic valve replacement
- Bioprosthetic aortic valve replacement
- Mechanical aortic valve replacement