Carotid Artery Disease and What's Pertinent

JOSEPH A PAULISIN DO

Goal of treatment of carotid disease

- Identify those at risk of developing symptoms
- Prevent patients at risk from developing symptoms
- Prevent people who have already been symptomatic from developing further and worsening symptoms

Carotid Disease

- Most common disease process: atherosclerosis
 - Other rare disease entities: Fibromuscular dysplasia, carotid artery aneurysms, dissections and carotid body tumors
 - Increased risk:
 - Cigarette smoking, high cholesterol, diabetes, age, obesity, CKD
- Symptoms:
 - TIA (transient ischemic attacks) precedes 15-20% of CVAs
 - Amaurosis fugax
 - ► <24 hrs
 - CVA (cerebrovascular accidents)
 - More than 24 hours
 - Syncope?

Symptoms

- Motor or sensory deficit contralateral to affected carotid artery
- Amaurosis ipsilateral to affected carotid artery

Pathophysiology of carotid plaquing

- At bifurcation of carotid
 - Where artery splits into two, high shear stress and tendency for stagnation of blood
 - Over time, an ulcer can form thought the fibrous cap of the plaque.
 - Platelets then deposit within the ulcer
 - These platelets lead to more platelets
 - As blood flows into the ulcer, the platelets and other debris can embolize up the internal carotid and into the brain
 - Can cause a TIA, CVA or nothing
 - Transcranial doppler example
 - Further study into morphology of plaque to identify high risk patients.

Stroke

600,000 strokes per year in U.S.
150,000 deaths from stroke per year
3rd leading cause of death

Causes of stroke

- Hemorrhagic (15%)
- Non-hemorrhagic (85%)
 - Cardioembolic
 - ► Afib, valvular disease
 - Large vessel disease 10-20%
 - Carotid artery atherosclerotic disease
 - Small vessel disease
 - Usually hypertension induced
 - Hematologic disorders
 - Polycythemia, hypercoagulable state

Imaging of the Carotid arteries

Ultrasound

- Least invasive, low risk
- Measure Peak systolic velocity and end diastolic velocity
 - Allows an estimate of percent stenosis
- Good screening tool
- ► CTA
 - Tends to underestimate
 - Helps delineate anatomical variations
 - ► High or low bifurcation
 - Aneurysmal/fmd and other rare entities
 - Risk of contrast: allergy and renal impairment

Imaging of the Carotid arteries

► MRA

- Tends to overestimate
- Technology may be institutionally dependent
 - Risk of magnet: patient metal
- Gandolinium toxicity
- Nephrogenic systemic fibrosis
- Digital Subtraction Angiography
 - Most invasive
 - Less iv contrast
 - Gold standard
 - Risk of access site and stroke (0.1 percent)
 - Tie breaker
- Rare tests PET/CT and Transcranial doppler (TCD)

MRA and DSA

How do we identify people at risk of developing a stroke from carotid stenosis

- History and physical
 - Carotid Bruit
 - Low sensitivity and specificity
 - Eye Exam
 - Hollenhorst plaque
- Screening Ultrasounds
 - High rate of detection of disease in asymptomatic patients
 - Low yield if other risk factors not present
 - US Preventive Services Task force currently recommends in patients at high risk
- People with potential symptoms

Treatment of Carotid Stenosis

Asymptomatic vs Symptomatic

same three options just when utilize is different

- Best medical therapy
 - ► Aspirin, Plavix and statins
 - Control risk factors
- Surgery (revascularization)
 - Carotid endarterectomy
- Stenting (revascularization)
 - Unless hospital/surgeon is in a trial, only approved in symptomatic patients

Indications for Revascularization

- Largely independent of method of revascularization
- Symptomatic disease
- Asymptomatic disease
- 3% rule (ACAS 2.3% stroke/death)
- We will ignore posterior fossa and external carotid disease today

Contraindications to Revascularization

- Disabling stroke, especially with altered LOC
- Total occlusion
- Medical comorbidities
- Life expectancy too short to derive benefit

Symptomatic Disease

- ▶ 70 99%
- NASCET 2 year follow up
 - 26% stroke risk in medical arm
 - 9% stroke risk in surgical arm

Symptomatic Disease

- ▶ 50 69%
- NASCET 5 year follow up
 - 22.7% stroke risk in medical arm
 - ▶ 15.7% stroke risk in surgical arm

Symptomatic Disease

- Symptoms within 120 days
- Increased risk reduction with greater degrees of stenosis
- Especially benefits males > 75
- There is benefit for women, but not as dramatic

Asymptomatic Disease

▶ > 60%

- ACAS 5 year follow up
 - 11% stroke risk in medical arm
 - ▶ 5.1% stroke risk in surgical arm

Asymptomatic Disease

- No increased risk reduction with greater degrees of stenosis
- Greatest benefits in patients < 65</p>
- Lesser benefit in women
- Consider limiting to
 - ▶ > 80%
 - contralateral occlusion or high grade stenosis
 - ulcerated lesions

Anatomy

Endarterectomy vs. Stenting

High-risk for endarterectomy – CMS criteria

CEA vs. CAS trials

Anatomic High Risk for Endarterectomy

- Anatomically inaccessible lesion
- Cervical immobility
- Prior neck dissection
- Tracheostomy
- Contralateral cranial nerve injury
- Radiation
- Contralateral occlusion
- Recurrent stenosis

Medical High Risk for Endarterectomy

- COPD
- ► NYHA III or IV CHF
- ► EF < 30%
- Unstable angina
- Recent MI

Endarterectomy Outcomes

Symptomatic

- ▶ 0.6 1% death
- ▶ 5 7% stroke/death
- Asymptomatic
 - 2.3% stroke/death

Endarterectomy Outcomes

- Cranial nerve injury: 4 7%
- ► Hemorrhage: 3%
- ▶ MI: 1 2.6%
- Hyperperfusion syndrome/intracranial hemorrhage: 1%
- Restenosis: 3 6%
- Infection: 0.3 0.8%

Stenting Outcomes

- Randomized trials plagued by
 - bias
 - operator inexperience
 - aberrant CEA outcomes
 - nonstandardized EPD
 - angioplasty without stent

Stenting Outcomes

Trial	CEA stroke/death	CAS stroke/death	CEA restenosis	CAS restenosis	
CAVATAS 2001	9.9%	10%	10.5%	30.7%	
SAPPHIRE 2004	20.1%	12.2%			
EVA-3S 2006	3.9%	9.6%			
SPACE 2006	6.3%	6.8%	4.6%	10.7%	

Technical Aspects of Endarterectomy

- GA or regional
- Routine or selective shunting
- Monitoring
- Eversion or longitudinal endarterectomy
- ***Patch or no patch***

