Pulmonary Emboli and Thrombolytic Management

Kalil Masri DO, FACC, FACOI, FCCP, FHFSA

Director of Heart Failure and Echocardiography McLaren Bay & Heart Vascular

Assistant Clinical Professor of Surgery Michigan State University

Pulmonary Embolism (PE)

Annual incidence

- United States: 69 per 100,000/year¹
 - Over 600,000 cases annually²
 - 1-2 PE episodes per 1000 people, up to 10 per 1000 in the elderly population³⁻⁶

Venous thromboembolism³

- PE commonly originates from lower limb deep vein thrombosis (DVT)
- 79% of patients presenting with PE have evidence of DVT
- PE occurs in up to 50% of patients with proximal DVT

PE Risk Stratification

Patient risk stratification (per AHA Scientific Statement 2011¹)							
Massive PE		Submassive PE		Minor/Nonmassive PE			
	High risk		Moderate/intermediate risk		Low risk		
-	Sustained hypotension (systolic BP <90 mmHg for ≥15 min)	-	Systemically normotensive (systolic BP ≥90 mmHg)	_	•	mically normotensive ic BP ≥90 mmHg)	
_	Inotropic support	_	RV dysfunction	-	No RV	dysfunction	
_	Pulselessness	_	Myocardial necrosis	_	No my	ocardial necrosis	
_	Persistent profound bradycardia (HR <40 bpm with signs or symptoms of shock)				4.79 cm 122 /308	2 Distance: 4.14 cm 2 Min/Max: 82 /271	

RV dysfunction

- RV/LV ratio > 0.9 or RV systolic dysfunction on echo
- RV/LV ratio > 0.9 on CT
- Elevation of BNP (>90 pg/mL)
- Elevation of NTpro-BNP (>500 pg/mL)
- ECG changes:
 - new complete or incomplete RBBB
 - anteroseptal ST elevation or depression
 - anteroseptal T-wave inversion

PE Population Subgroups

- 1. Goldhaber et al. Lancet 1999;353:1386-1389
- 2. Meyer et al. New Engl J Med 2014; 370: 1402-11
- 3. Casazza et al. Thrombosis Research 2012: 130:847-852

Why treat?

 The presence of right ventricular dysfunction (RVD) is a predictor of poor patient outcomes

- Mortality
- Adverse events
- VTE recurrence

Patients with RVD defined as RV/LV > 0.9 have a greater chance of adverse events within 30 days

American Heart Association

Right Ventricular Enlargement on Chest Computed Tomography

Prognostic Role in Acute Pulmonary Embolism

Rene Quiroz, MD, MPH*; Nils Kucher, MD*; U. Joseph Schoepf, MD; Florian Kipfmueller, BS; Scott D. Solomon, MD; Philip Costello, MD; Samuel Z. Goldhaber, MD

Background—We investigated the prognostic role of right ventricular enlargement on multidetector-row chest CT in acute pulmonary embolism (PE).

Methods and Results—We studied 63 patients with CT-confirmed PE who underwent echocardiography within the ensuing 24 hours. Adverse clinical events, defined as 30-day mortality or the need for cardiopulmonary resuscitation, mechanical ventilation, pressors, rescue thrombolysis, or surgical embolectomy, were present in 24 patients. We performed off-line CT measurements of right and left ventricular dimensions (RV_D, LV_D) with axial and 2-dimensional reconstructed 4-chamber (4-CH) views. The proportion of patients with RV_D/LV_D>0.9 on the axial view was similar in patients with (70.8%) and those without adverse events (71.8%; P=0.577), In contrast, RV_D/LV_D>0.9 on the 4-CH view was more common in patients with (80.3%) than without (51.3%; P=0.015) adverse events. The area under the curve of RV_D/LV_D from the axial and 4-CH views for predicting adverse events was 0.667 and 0.753, respectively. Sensitivity and specificity of RV_D/LV_D>0.9 for predicting adverse events were 37.5% and 92.3% on the axial view and 83.3% and 48.7% on the reconstructed 4-CH view, respectively. RV_D/LV_D>0.9 on the 4-CH view was an independent predictor for adverse events (OR, 4.02; 95% CI, 1.06 to 15.19; P=0.041) when adjusted for age, obesity, cancer, and recent surgery.

Conclusions—Right ventricular enlargement on the reconstructed CT 4-CH views predicts adverse clinical events in patients with acute PE. Ventricular CT measurements obtained from 4-CH views are superior to those from axial views for identifying high-risk patients. (Circulation. 2004;109:2401-2404.)

Key Words: tomography ■ embolism ■ prognosis ■ thrombosis

- Retrospective analysis of 63 patients with chest CT
- Adverse event rate at 30 days:
 - 80.3% if RV/LV ratio > 0.9
 - 51.3% if RV/LV ratio ≤ 0.9

Presence of RV hypokinesis associated with 57% increase in mortality rate at 3 months

Prospective study of 2,454
 consecutive PE patients at 52
 hospitals in 7 countries

Mortality rate at 3 months:

- 21% with hypokinesis
- 15% with no hypokinesis

Goldhaber, S et al, Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER), Lancet 1999; 353: 1386-89.

Treatment

Standard Therapies

- Anticoagulation
 - Unfractionated heparin
 - Enoxaparin (LMWH)
 - Sodium Warfarin

Goal is to help prevent thrombus propagation

Rationale for Thrombolysis

REDUCE THROMBUS BURDEN (not achievable by anticoagulaton alone)

- Reverse RV afterload / failure toward prevention of hemodynamic collapse
- Improve pulmonary reperfusion/capillary blood flow / gas exchange
- Restore systemic arterial perfusion pressure
- Decrease the risk of developing chronic pulmonary hypertension

Thrombolytic Therapy

- Systemic thrombolysis
- Catheter-directed thromboysis (CDT)
- Acoustic pulse thrombolysis

More data...

The Clinical Respiratory Journal

Journal of Thrombosis and Haemostasis, 12: 1086-1095

DOI: 10.1111/jth.12608

ORIGINAL ARTICLE

Impact of the efficacy of thrombolytic therapy on the mortality of patients with acute submassive pulmonary embolism: a meta-analysis

S. NAKAMURA, H. TAKANO, Y. KUBOTA, K. ASAI and W. SHIMIZU Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan

PERIPHERAL VASCULAR DISEASE (MR JAFF, SECTION EDITOR)

Chronic Thromboembolic Pulmonary Hypertension: the End Result of Pulmonary Embolism

Alison S. Witkin 1 · Richard N. Channick 1

Published online: 23 June 2015

Abstract Chronic thromboembolic pulmonary hypertension (CTEPH) occurs when a pulmonary embolism fails to undergo complete thrombolysis leading to vascular occlusion and pulmonary hypertension. Despite the fact that CTEPH is a potential

Aggressive Approach

CLINICAL FOCUS: HOSPITAL ADMISSIONS, LATEST PROTOCOLS, PREOPERATIVE MEDICINE, AND TRANSITIONS OF CARE

The Massachusetts General Hospital Pulmonary Embolism Response Team (MGH PERT): Creation of a Multidisciplinary Program to Improve Care of Patients With Massive and Submassive Pulmonary Embolism

Tim Provias, MD, MPH¹
David M Dudzinski, MD, JD¹
Michael R Jaff, DO, FACC,
FAHA¹
Kenneth Rosenfield, MD,
MHCDS¹
Richard Channick, MD²
Joshua Baker, MD¹
Ido Weinberg, MD²
Cameron Donaldson, MD¹
Rajeev Narayan, MD¹
Andrew N Rassi, MD¹
Christopher Kabrhel, MD,
MPH³

¹The Massachusetts General Hospital Institute for Heart, Vascular, and Stroke Care; ²Division of Pulmonary and Critical Care; ³Center for Vascular Emergencies, Department of Emergency Medicine, Boston, MA

PERT

Pulmonary Embolus Response Team

Multi-disciplinary approach

Vascular Surgery

PERT Team

Co-Directors McLaren PERT

Kalil Masri, DO FACC FACOI FCCP Cardiology

Nicolas J. Mouawad, MD MPH MBA RPVI Vascular Surgery

Protocol

- Identification of patients with massive or submassive PE
- PERT team notified
 - McLaren Bay Region Transfer Center
 - ER
- Cath lab / hybrid team mobilized

Available 24 hours per day

Sample Hospital Algorithm for Pulmonary Embolism Massive PE Sustained Hypotension (Systolic BP <90 mmHG for \geq 15 minutes) Inotropic Support ED presentation with Probable PE Pulselessness Persistent profound bradycardia (HR < 40 bpm or symptoms of shock) Submassive PE: Initiate Heparin Therapy if NO Absence of above findings: plus 2 of below: CT or ECHO confirms PE Diagnosis contraindications • RV Dysfunction. RV/LV Ratio > 0.9 Echo –RSVP Dilation, Hypokenesis, Elevated Pressures (+) Troponins • (+) EKG Acute Changes Echo, EKG, Troponin, BNP in ALL PE Patients **ABSENCE** of MASSIVE or RV Strain = SUBMASSIVE SUBMASSIVE Finding Shock, Hypotensive, PEA = MASSIVE Enlargement RV/LV Ratio > 0.9 Heparin / Hemodynamically stable Anticoagulation Equivalent Candidate for Lytic Therapy? (+) Troponins Therapy (+) EKG **Thrombolytic Therapy Contraindications** No Evidence of Shock Absolute Absence of Massive -PMH Hemorrhagic Stroke -Active intracranial Neoplasm Findings -Recent (<2months) intracranial surgery or trauma Consider: Relative

Consider:

> IVC Filter

> Surgical Embolectomy

-Bleeding Diathesis

-Thrombocytopenia

-Surgery Previous 10 days

-Uncontrolled Severe HTN (S>200 or D> 100)

Consider:

> Systemic Thrombolytic

> Catheter based lytics

If relative systemic is contraindicated

Therapy

Ultrasound Assisted Thrombolysis

- Acoustic pulse thrombolysis initiated
- Patients maintained in ICU for close hemodynamic monitoring
- Discharged on anticoagulation with follow up ECHO/CTA in 6-8 weeks

Goal....

All in an in effort to decrease the complications of chronic thromboembolic pulmonary hypertension

McLaren Bay Heart & Vascular

McLaren Bay Region Transfer Center

PERT

Kalil Masri, DO FACC FACOI FCCP Cardiology

Nicolas J. Mouawad, MD MPH MBA RPVI Vascular Surgery

